Parameter¶
- class ionworkspipeline.Parameter(name, initial_value=None, bounds=None, prior=None, normalize=None, check_bounds=None, check_initial_value=None)¶
- Parameter object for use in data fits, stores the initial value and bounds - Inherits from - pybamm.InputParameterfor compatibility with PyBaMM models.- Parameters¶- namestr
- The name of the parameter. 
- initial_valuefloat or int, optional
- The initial value to be assigned to the parameter. If not provided and bounds are given, will be set to the mean of finite bounds. Defaults to 1 if no bounds are given. 
- boundstuple, optional
- A tuple defining the lower and upper bounds for the parameter. Defaults to (-np.inf, np.inf). 
- normalizebool, optional
- Whether to normalize the parameter by its initial value. Defaults to True. 
 - Extends: - pybamm.expression_tree.input_parameter.InputParameter- property bounds¶
- Returns the corrected parameter bounds 
 - create_copy()¶
- Overwrite create_copy so that the fitting scale is incorporated 
 - evaluate(*args, **kwargs)¶
- Returns the scaled value of the parameter 
 - get_bounds()¶
- Returns the unmodified bounds 
 - get_initial_value()¶
- Returns the unmodified initial value 
 - property initial_value¶
- Returns the corrected initial value 
 - property is_transformed¶
- Returns whether the parameter represents a transformed variable. - Returns¶- bool
- True if the parameter is a transformed variable (e.g., “Log10(Diffusion Coefficient)”) False if the parameter is in its original form (e.g., “Diffusion Coefficient”) 
 - Examples¶- >>> param = Parameter("Diffusion Coefficient", 1e-9, (1e-10, 1e-8)) >>> param.is_transformed # Returns False >>> transformed_param = Log10(param) >>> transformed_param.is_transformed # Returns True 
 - property normalized_bounds¶
- Returns the normalized bounds 
 - property normalized_initial_value¶
- Returns the normalized initial value 
 - property prior¶
- Returns the prior 
 - set_bounds(value, check_initial_value=True, check_bounds=True)¶
- Sets the parameter bounds 
 - set_fitting_scale()¶
- Sets the fitting scale for the parameter - Parameters¶- normalizebool, optional
- Whether to normalize the parameter by its initial value. Defaults to True. 
 
 - set_prior(prior)¶
- Sets the prior for the parameter 
 - to_dict(name)¶
- Convert the parameter to a dictionary for fitting. - This method is used by the DataFit class to process parameters for fitting. For a basic Parameter object, it simply returns a dictionary with one entry mapping the given name to this parameter object. - Parameters¶- namestr
- The name to use for the parameter in the model. This may be different from the parameter’s internal name. 
 - Returns¶- dict
- A dictionary with a single entry mapping the given name to this parameter. 
 
 
