Result¶
- class ionworkspipeline.Result(parameter_values: dict, optimizer_result: OptimizerResult | SamplerResult, samples: ndarray | None = None, costs: ndarray | None = None, callbacks: dict | None = None, callback_results: dict | None = None, children: list[Result] | None = None, initial_guess: dict | None = None, job_id: int | None = None)¶
A class to store the results of a
ionworkspipeline.DataFit
.Parameters¶
- parameter_valuesdict
The final values of the optimized parameters.
- optimizer_result
ionworkspipeline.OptimizerResult
orionworkspipeline.SamplerResult
The result object returned by the SciPy optimizer.
- callbacksdict
The callbacks used during optimization.
- callback_resultsdict
The results collected by callbacks during optimization.
- childrendict, optional
Results from multistarted parameter estimation if applicable.
Attributes¶
- parameter_valuesdict
The final values of the optimized parameters.
- optimizer_result
ionworkspipeline.OptimizerResult
orionworkspipeline.SamplerResult
The result object in the format returned by the SciPy optimizer.
- callbacksdict
The callbacks used during optimization.
- callback_resultsdict
The results collected by callbacks during optimization, formatted as follows:
{ "callback_name": { "data": ..., "options": ..., "initial_results": { "inputs": ..., "outputs": ..., }, "fit_results": { "inputs": ..., "outputs": ..., }, }, ... }
- childrendict
Results from sub-fits if this was part of a composite fit.
- initial_guessdict
The initial guess for the parameters.
Notes¶
The specific attributes available in optimizer_result may vary depending on the optimization method used. Refer to SciPy’s documentation for a complete list of possible attributes.
Extends:
builtins.dict
- best_results(num_results: int | integer | None = None) list[Result] ¶
Returns the best results from the children in ascending order of cost.
Parameters¶
- num_resultsint or np.integer, optional
The number of best results to return. If None, all children are returned.
Returns¶
- list[Result]
The best results from the children in ascending order of cost.
- class ionworkspipeline.OptimizerResult(x=None)¶
Result of an optimization. Inherits from scipy.optimize.OptimizeResult.
This class represents the result of running an optimizer. It contains the optimal parameter values found and other optimization-related information like function evaluations, success status etc.
Parameters¶
- xarray_like, optional
The solution of the optimization. Default is None.
Extends:
scipy.optimize._optimize.OptimizeResult
- class ionworkspipeline.SamplerResult(samples=None, costs=None)¶
Result of a sampling procedure. Inherits from scipy.optimize.OptimizeResult.
This class represents the result of running a sampler. It contains the samples drawn from the parameter space and their associated costs/objective function values.
Parameters¶
- samplesarray_like, optional
The samples drawn from the parameter space. Default is None.
- costsarray_like, optional
The cost/objective function values for each sample. Default is None.
Extends:
scipy.optimize._optimize.OptimizeResult
- ionworkspipeline.result.combine(children: list[Result]) Result ¶
Combine a list of results into a single result.
Parameters¶
- childrenlist[Result]
The list of results to combine.
Returns¶
- Result
A new Result object containing the combined children of both results, sorted by their minimum costs. The properties of the returned Result are taken from the child with the smallest cost.